

Pexpect version 4.8

[image: Build status]
 [https://travis-ci.org/pexpect/pexpect]Pexpect makes Python a better tool for controlling other
applications.

Pexpect is a pure Python module for spawning child applications;
controlling them; and responding to expected patterns in their output.
Pexpect works like Don Libes’ Expect. Pexpect allows your script to
spawn a child application and control it as if a human were typing
commands.

Pexpect can be used for automating interactive applications such as
ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different
servers. It can be used for automated software testing. Pexpect is in
the spirit of Don Libes’ Expect, but Pexpect is pure Python. Unlike
other Expect-like modules for Python, Pexpect does not require TCL or
Expect nor does it require C extensions to be compiled. It should work
on any platform that supports the standard Python pty module. The
Pexpect interface was designed to be easy to use.

Contents:

	Installation
	Requirements

	API Overview
	Special EOF and TIMEOUT patterns

	Find the end of line – CR/LF conventions

	Beware of + and * at the end of patterns

	Debugging

	Exceptions

	Pexpect on Windows

	API documentation
	Core pexpect components

	fdpexpect - use pexpect with a file descriptor

	popen_spawn - use pexpect with a piped subprocess

	replwrap - Control read-eval-print-loops

	pxssh - control an SSH session

	Examples

	FAQ

	Common problems
	Threads

	Timing issue with send() and sendline()

	Truncated output just before child exits

	Controlling SSH on Solaris

	child does not receive full input, emits BEL

	History
	Releases

	Moves and forks

Pexpect is developed on Github [http://github.com/pexpect/pexpect]. Please
report issues [https://github.com/pexpect/pexpect/issues] there as well.

Indices and tables

	Index

	Module Index

	Search Page

Installation

Pexpect is on PyPI, and can be installed with standard tools:

pip install pexpect

Or:

easy_install pexpect

Requirements

This version of Pexpect requires Python 3.3 or above, or Python 2.7.

As of version 4.0, Pexpect can be used on Windows and POSIX systems. However,
pexpect.spawn and pexpect.run() are only available on POSIX,
where the pty [https://docs.python.org/3/library/pty.html#module-pty] module is present in the standard library. See
Pexpect on Windows for more information.

API Overview

Pexpect can be used for automating interactive applications such as ssh, ftp,
mencoder, passwd, etc. The Pexpect interface was designed to be easy to use.

Here is an example of Pexpect in action:

This connects to the openbsd ftp site and
downloads the recursive directory listing.
import pexpect
child = pexpect.spawn('ftp ftp.openbsd.org')
child.expect('Name .*: ')
child.sendline('anonymous')
child.expect('Password:')
child.sendline('noah@example.com')
child.expect('ftp> ')
child.sendline('lcd /tmp')
child.expect('ftp> ')
child.sendline('cd pub/OpenBSD')
child.expect('ftp> ')
child.sendline('get README')
child.expect('ftp> ')
child.sendline('bye')

Obviously you could write an ftp client using Python’s own ftplib [https://docs.python.org/3/library/ftplib.html#module-ftplib] module,
but this is just a demonstration. You can use this technique with any application.
This is especially handy if you are writing automated test tools.

There are two important methods in Pexpect – expect() and
send() (or sendline() which is
like send() with a linefeed). The expect()
method waits for the child application to return a given string. The string you
specify is a regular expression, so you can match complicated patterns. The
send() method writes a string to the child application.
From the child’s point of view it looks just like someone typed the text from a
terminal. After each call to expect() the before and after
properties will be set to the text printed by child application. The before
property will contain all text up to the expected string pattern. The after
string will contain the text that was matched by the expected pattern.
The match property is set to the re match object [http://docs.python.org/3/library/re#match-objects].

An example of Pexpect in action may make things more clear. This example uses
ftp to login to the OpenBSD site; list files in a directory; and then pass
interactive control of the ftp session to the human user:

import pexpect
child = pexpect.spawn ('ftp ftp.openbsd.org')
child.expect ('Name .*: ')
child.sendline ('anonymous')
child.expect ('Password:')
child.sendline ('noah@example.com')
child.expect ('ftp> ')
child.sendline ('ls /pub/OpenBSD/')
child.expect ('ftp> ')
print child.before # Print the result of the ls command.
child.interact() # Give control of the child to the user.

Special EOF and TIMEOUT patterns

There are two special patterns to match the End Of File (EOF)
or a Timeout condition (TIMEOUT). You can pass these
patterns to expect(). These patterns are not regular
expressions. Use them like predefined constants.

If the child has died and you have read all the child’s output then ordinarily
expect() will raise an EOF exception.
You can read everything up to the EOF without generating an exception by using
the EOF pattern expect. In this case everything the child has output will be
available in the before property.

The pattern given to expect() may be a regular expression
or it may also be a list of regular expressions. This allows you to match
multiple optional responses. The expect() method returns
the index of the pattern that was matched. For example, say you wanted to login
to a server. After entering a password you could get various responses from the
server – your password could be rejected; or you could be allowed in and asked
for your terminal type; or you could be let right in and given a command prompt.
The following code fragment gives an example of this:

child.expect('password:')
child.sendline(my_secret_password)
We expect any of these three patterns...
i = child.expect (['Permission denied', 'Terminal type', '[#\$] '])
if i==0:
 print('Permission denied on host. Can\'t login')
 child.kill(0)
elif i==1:
 print('Login OK... need to send terminal type.')
 child.sendline('vt100')
 child.expect('[#\$] ')
elif i==2:
 print('Login OK.')
 print('Shell command prompt', child.after)

If nothing matches an expected pattern then expect() will
eventually raise a TIMEOUT exception. The default time is 30
seconds, but you can change this by passing a timeout argument to
expect():

Wait no more than 2 minutes (120 seconds) for password prompt.
child.expect('password:', timeout=120)

Find the end of line – CR/LF conventions

Pexpect matches regular expressions a little differently than what you might be
used to.

The $ pattern for end of line match is useless. The $
matches the end of string, but Pexpect reads from the child one character at a
time, so each character looks like the end of a line. Pexpect can’t do a
look-ahead into the child’s output stream. In general you would have this
situation when using regular expressions with any stream.

Note

Pexpect does have an internal buffer, so reads are faster than one character
at a time, but from the user’s perspective the regex patterns test happens
one character at a time.

The best way to match the end of a line is to look for the newline: "\r\n"
(CR/LF). Yes, that does appear to be DOS-style. It may surprise some UNIX people
to learn that terminal TTY device drivers (dumb, vt100, ANSI, xterm, etc.) all
use the CR/LF combination to signify the end of line. Pexpect uses a Pseudo-TTY
device to talk to the child application, so when the child app prints "\n"
you actually see "\r\n".

UNIX uses just linefeeds to end lines of text, but not when it comes to TTY
devices! TTY devices are more like the Windows world. Each line of text ends
with a CR/LF combination. When you intercept data from a UNIX command from a
TTY device you will find that the TTY device outputs a CR/LF combination. A
UNIX command may only write a linefeed (\n), but the TTY device driver
converts it to CR/LF. This means that your terminal will see lines end with
CR/LF (hex 0D 0A). Since Pexpect emulates a terminal, to match ends of
lines you have to expect the CR/LF combination:

child.expect('\r\n')

If you just need to skip past a new line then expect('\n') by itself will
work, but if you are expecting a specific pattern before the end of line then
you need to explicitly look for the \r. For example the following expects a
word at the end of a line:

child.expect('\w+\r\n')

But the following would both fail:

child.expect('\w+\n')

And as explained before, trying to use $ to match the end of line
would not work either:

child.expect ('\w+$')

So if you need to explicitly look for the END OF LINE, you want to look for the
CR/LF combination – not just the LF and not the $ pattern.

This problem is not limited to Pexpect. This problem happens any time you try
to perform a regular expression match on a stream. Regular expressions need to
look ahead. With a stream it is hard to look ahead because the process
generating the stream may not be finished. There is no way to know if the
process has paused momentarily or is finished and waiting for you. Pexpect must
implicitly always do a NON greedy match (minimal) at the end of a input.

Pexpect compiles all regular expressions with the re.DOTALL [https://docs.python.org/3/library/re.html#re.DOTALL] flag.
With the DOTALL [https://docs.python.org/3/library/re.html#re.DOTALL] flag, a "." will match a newline.

Beware of + and * at the end of patterns

Remember that any time you try to match a pattern that needs look-ahead that
you will always get a minimal match (non greedy). For example, the following
will always return just one character:

child.expect ('.+')

This example will match successfully, but will always return no characters:

child.expect ('.*')

Generally any star * expression will match as little as possible.

One thing you can do is to try to force a non-ambiguous character at the end of
your \d+ pattern. Expect that character to delimit the string. For
example, you might try making the end of your pattern be \D+ instead
of \D*. Number digits alone would not satisfy the (\d+)\D+
pattern. You would need some numbers and at least one non-number at the end.

Debugging

If you get the string value of a pexpect.spawn object you will get lots
of useful debugging information. For debugging it’s very useful to use the
following pattern:

try:
 i = child.expect ([pattern1, pattern2, pattern3, etc])
except:
 print("Exception was thrown")
 print("debug information:")
 print(str(child))

It is also useful to log the child’s input and out to a file or the screen. The
following will turn on logging and send output to stdout (the screen):

child = pexpect.spawn(foo)
child.logfile = sys.stdout.buffer

The sys.stdout.buffer object is available since Python 3. With Python 2, one
has to assign just sys.stdout instead.

Exceptions

EOF

Note that two flavors of EOF Exception may be thrown. They are virtually
identical except for the message string. For practical purposes you should have
no need to distinguish between them, but they do give a little extra information
about what type of platform you are running. The two messages are:

	“End Of File (EOF) in read(). Exception style platform.”

	“End Of File (EOF) in read(). Empty string style platform.”

Some UNIX platforms will throw an exception when you try to read from a file
descriptor in the EOF state. Other UNIX platforms instead quietly return an
empty string to indicate that the EOF state has been reached.

If you wish to read up to the end of the child’s output without generating an
EOF exception then use the expect(pexpect.EOF) method.

TIMEOUT

The expect() and read() methods will
also timeout if the child does not generate any output for a given amount of
time. If this happens they will raise a TIMEOUT exception.
You can have these methods ignore timeout and block indefinitely by passing
None for the timeout parameter:

child.expect(pexpect.EOF, timeout=None)

Pexpect on Windows

New in version 4.0: Windows support

Pexpect can be used on Windows to wait for a pattern to be produced by a child
process, using pexpect.popen_spawn.PopenSpawn, or a file descriptor,
using pexpect.fdpexpect.fdspawn.

pexpect.spawn and pexpect.run() are not available on Windows,
as they rely on Unix pseudoterminals (ptys). Cross platform code must not use
these.

PopenSpawn is not a direct replacement for spawn. Many programs only
offer interactive behaviour if they detect that they are running in a terminal.
When run by PopenSpawn, they may behave differently.

See also

	winpexpect [https://pypi.python.org/pypi/winpexpect] and wexpect [https://gist.github.com/anthonyeden/8488763]

	Two unmaintained pexpect-like modules for Windows, which work with a
hidden console.

API documentation

	Core pexpect components
	spawn class

	run function

	Exceptions

	Utility functions

	fdpexpect - use pexpect with a file descriptor
	fdspawn class

	popen_spawn - use pexpect with a piped subprocess
	PopenSpawn class

	replwrap - Control read-eval-print-loops

	pxssh - control an SSH session
	pxssh class

The modules pexpect.screen and pexpect.ANSI have been deprecated in
Pexpect version 4. They were separate from the main use cases for Pexpect, and
there are better maintained Python terminal emulator packages, such as
pyte [https://pypi.python.org/pypi/pyte].
These modules are still present for now, but we don’t advise using them in new
code.

Core pexpect components

Pexpect is a Python module for spawning child applications and controlling
them automatically. Pexpect can be used for automating interactive applications
such as ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different servers. It
can be used for automated software testing. Pexpect is in the spirit of Don
Libes’ Expect, but Pexpect is pure Python. Other Expect-like modules for Python
require TCL and Expect or require C extensions to be compiled. Pexpect does not
use C, Expect, or TCL extensions. It should work on any platform that supports
the standard Python pty module. The Pexpect interface focuses on ease of use so
that simple tasks are easy.

There are two main interfaces to the Pexpect system; these are the function,
run() and the class, spawn. The spawn class is more powerful. The run()
function is simpler than spawn, and is good for quickly calling program. When
you call the run() function it executes a given program and then returns the
output. This is a handy replacement for os.system().

For example:

pexpect.run('ls -la')

The spawn class is the more powerful interface to the Pexpect system. You can
use this to spawn a child program then interact with it by sending input and
expecting responses (waiting for patterns in the child’s output).

For example:

child = pexpect.spawn('scp foo user@example.com:.')
child.expect('Password:')
child.sendline(mypassword)

This works even for commands that ask for passwords or other input outside of
the normal stdio streams. For example, ssh reads input directly from the TTY
device which bypasses stdin.

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett,
Robert Stone, Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids
vander Molen, George Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin,
Jacques-Etienne Baudoux, Geoffrey Marshall, Francisco Lourenco, Glen Mabey,
Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen, Guillaume
Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn, John
Spiegel, Jan Grant, and Shane Kerr. Let me know if I forgot anyone.

Pexpect is free, open source, and all that good stuff.
http://pexpect.sourceforge.net/

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

spawn class

	
class pexpect.spawn(command, args=[], timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, ignore_sighup=False, echo=True, preexec_fn=None, encoding=None, codec_errors='strict', dimensions=None, use_poll=False)

	This is the main class interface for Pexpect. Use this class to start
and control child applications.

	
__init__(command, args=[], timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, ignore_sighup=False, echo=True, preexec_fn=None, encoding=None, codec_errors='strict', dimensions=None, use_poll=False)

	This is the constructor. The command parameter may be a string that
includes a command and any arguments to the command. For example:

child = pexpect.spawn('/usr/bin/ftp')
child = pexpect.spawn('/usr/bin/ssh user@example.com')
child = pexpect.spawn('ls -latr /tmp')

You may also construct it with a list of arguments like so:

child = pexpect.spawn('/usr/bin/ftp', [])
child = pexpect.spawn('/usr/bin/ssh', ['user@example.com'])
child = pexpect.spawn('ls', ['-latr', '/tmp'])

After this the child application will be created and will be ready to
talk to. For normal use, see expect() and send() and sendline().

Remember that Pexpect does NOT interpret shell meta characters such as
redirect, pipe, or wild cards (>, |, or *). This is a
common mistake. If you want to run a command and pipe it through
another command then you must also start a shell. For example:

child = pexpect.spawn('/bin/bash -c "ls -l | grep LOG > logs.txt"')
child.expect(pexpect.EOF)

The second form of spawn (where you pass a list of arguments) is useful
in situations where you wish to spawn a command and pass it its own
argument list. This can make syntax more clear. For example, the
following is equivalent to the previous example:

shell_cmd = 'ls -l | grep LOG > logs.txt'
child = pexpect.spawn('/bin/bash', ['-c', shell_cmd])
child.expect(pexpect.EOF)

The maxread attribute sets the read buffer size. This is maximum number
of bytes that Pexpect will try to read from a TTY at one time. Setting
the maxread size to 1 will turn off buffering. Setting the maxread
value higher may help performance in cases where large amounts of
output are read back from the child. This feature is useful in
conjunction with searchwindowsize.

When the keyword argument searchwindowsize is None (default), the
full buffer is searched at each iteration of receiving incoming data.
The default number of bytes scanned at each iteration is very large
and may be reduced to collaterally reduce search cost. After
expect() returns, the full buffer attribute remains up to
size maxread irrespective of searchwindowsize value.

When the keyword argument timeout is specified as a number,
(default: 30), then TIMEOUT will be raised after the value
specified has elapsed, in seconds, for any of the expect()
family of method calls. When None, TIMEOUT will not be raised, and
expect() may block indefinitely until match.

The logfile member turns on or off logging. All input and output will
be copied to the given file object. Set logfile to None to stop
logging. This is the default. Set logfile to sys.stdout to echo
everything to standard output. The logfile is flushed after each write.

Example log input and output to a file:

child = pexpect.spawn('some_command')
fout = open('mylog.txt','wb')
child.logfile = fout

Example log to stdout:

In Python 2:
child = pexpect.spawn('some_command')
child.logfile = sys.stdout

In Python 3, we'll use the ``encoding`` argument to decode data
from the subprocess and handle it as unicode:
child = pexpect.spawn('some_command', encoding='utf-8')
child.logfile = sys.stdout

The logfile_read and logfile_send members can be used to separately log
the input from the child and output sent to the child. Sometimes you
don’t want to see everything you write to the child. You only want to
log what the child sends back. For example:

child = pexpect.spawn('some_command')
child.logfile_read = sys.stdout

You will need to pass an encoding to spawn in the above code if you are
using Python 3.

To separately log output sent to the child use logfile_send:

child.logfile_send = fout

If ignore_sighup is True, the child process will ignore SIGHUP
signals. The default is False from Pexpect 4.0, meaning that SIGHUP
will be handled normally by the child.

The delaybeforesend helps overcome a weird behavior that many users
were experiencing. The typical problem was that a user would expect() a
“Password:” prompt and then immediately call sendline() to send the
password. The user would then see that their password was echoed back
to them. Passwords don’t normally echo. The problem is caused by the
fact that most applications print out the “Password” prompt and then
turn off stdin echo, but if you send your password before the
application turned off echo, then you get your password echoed.
Normally this wouldn’t be a problem when interacting with a human at a
real keyboard. If you introduce a slight delay just before writing then
this seems to clear up the problem. This was such a common problem for
many users that I decided that the default pexpect behavior should be
to sleep just before writing to the child application. 1/20th of a
second (50 ms) seems to be enough to clear up the problem. You can set
delaybeforesend to None to return to the old behavior.

Note that spawn is clever about finding commands on your path.
It uses the same logic that “which” uses to find executables.

If you wish to get the exit status of the child you must call the
close() method. The exit or signal status of the child will be stored
in self.exitstatus or self.signalstatus. If the child exited normally
then exitstatus will store the exit return code and signalstatus will
be None. If the child was terminated abnormally with a signal then
signalstatus will store the signal value and exitstatus will be None:

child = pexpect.spawn('some_command')
child.close()
print(child.exitstatus, child.signalstatus)

If you need more detail you can also read the self.status member which
stores the status returned by os.waitpid. You can interpret this using
os.WIFEXITED/os.WEXITSTATUS or os.WIFSIGNALED/os.TERMSIG.

The echo attribute may be set to False to disable echoing of input.
As a pseudo-terminal, all input echoed by the “keyboard” (send()
or sendline()) will be repeated to output. For many cases, it is
not desirable to have echo enabled, and it may be later disabled
using setecho(False) followed by waitnoecho(). However, for some
platforms such as Solaris, this is not possible, and should be
disabled immediately on spawn.

If preexec_fn is given, it will be called in the child process before
launching the given command. This is useful to e.g. reset inherited
signal handlers.

The dimensions attribute specifies the size of the pseudo-terminal as
seen by the subprocess, and is specified as a two-entry tuple (rows,
columns). If this is unspecified, the defaults in ptyprocess will apply.

The use_poll attribute enables using select.poll() over select.select()
for socket handling. This is handy if your system could have > 1024 fds

	
expect(pattern, timeout=-1, searchwindowsize=-1, async_=False, **kw)

	This seeks through the stream until a pattern is matched. The
pattern is overloaded and may take several types. The pattern can be a
StringType, EOF, a compiled re, or a list of any of those types.
Strings will be compiled to re types. This returns the index into the
pattern list. If the pattern was not a list this returns index 0 on a
successful match. This may raise exceptions for EOF or TIMEOUT. To
avoid the EOF or TIMEOUT exceptions add EOF or TIMEOUT to the pattern
list. That will cause expect to match an EOF or TIMEOUT condition
instead of raising an exception.

If you pass a list of patterns and more than one matches, the first
match in the stream is chosen. If more than one pattern matches at that
point, the leftmost in the pattern list is chosen. For example:

the input is 'foobar'
index = p.expect(['bar', 'foo', 'foobar'])
returns 1('foo') even though 'foobar' is a "better" match

Please note, however, that buffering can affect this behavior, since
input arrives in unpredictable chunks. For example:

the input is 'foobar'
index = p.expect(['foobar', 'foo'])
returns 0('foobar') if all input is available at once,
but returns 1('foo') if parts of the final 'bar' arrive late

When a match is found for the given pattern, the class instance
attribute match becomes an re.MatchObject result. Should an EOF
or TIMEOUT pattern match, then the match attribute will be an instance
of that exception class. The pairing before and after class
instance attributes are views of the data preceding and following
the matching pattern. On general exception, class attribute
before is all data received up to the exception, while match and
after attributes are value None.

When the keyword argument timeout is -1 (default), then TIMEOUT will
raise after the default value specified by the class timeout
attribute. When None, TIMEOUT will not be raised and may block
indefinitely until match.

When the keyword argument searchwindowsize is -1 (default), then the
value specified by the class maxread attribute is used.

A list entry may be EOF or TIMEOUT instead of a string. This will
catch these exceptions and return the index of the list entry instead
of raising the exception. The attribute ‘after’ will be set to the
exception type. The attribute ‘match’ will be None. This allows you to
write code like this:

index = p.expect(['good', 'bad', pexpect.EOF, pexpect.TIMEOUT])
if index == 0:
 do_something()
elif index == 1:
 do_something_else()
elif index == 2:
 do_some_other_thing()
elif index == 3:
 do_something_completely_different()

instead of code like this:

try:
 index = p.expect(['good', 'bad'])
 if index == 0:
 do_something()
 elif index == 1:
 do_something_else()
except EOF:
 do_some_other_thing()
except TIMEOUT:
 do_something_completely_different()

These two forms are equivalent. It all depends on what you want. You
can also just expect the EOF if you are waiting for all output of a
child to finish. For example:

p = pexpect.spawn('/bin/ls')
p.expect(pexpect.EOF)
print p.before

If you are trying to optimize for speed then see expect_list().

On Python 3.4, or Python 3.3 with asyncio installed, passing
async_=True will make this return an asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] coroutine,
which you can yield from to get the same result that this method would
normally give directly. So, inside a coroutine, you can replace this code:

index = p.expect(patterns)

With this non-blocking form:

index = yield from p.expect(patterns, async_=True)

	
expect_exact(pattern_list, timeout=-1, searchwindowsize=-1, async_=False, **kw)

	This is similar to expect(), but uses plain string matching instead
of compiled regular expressions in ‘pattern_list’. The ‘pattern_list’
may be a string; a list or other sequence of strings; or TIMEOUT and
EOF.

This call might be faster than expect() for two reasons: string
searching is faster than RE matching and it is possible to limit the
search to just the end of the input buffer.

This method is also useful when you don’t want to have to worry about
escaping regular expression characters that you want to match.

Like expect(), passing async_=True will make this return an
asyncio coroutine.

	
expect_list(pattern_list, timeout=-1, searchwindowsize=-1, async_=False, **kw)

	This takes a list of compiled regular expressions and returns the
index into the pattern_list that matched the child output. The list may
also contain EOF or TIMEOUT(which are not compiled regular
expressions). This method is similar to the expect() method except that
expect_list() does not recompile the pattern list on every call. This
may help if you are trying to optimize for speed, otherwise just use
the expect() method. This is called by expect().

Like expect(), passing async_=True will make this return an
asyncio coroutine.

	
compile_pattern_list(patterns)

	This compiles a pattern-string or a list of pattern-strings.
Patterns must be a StringType, EOF, TIMEOUT, SRE_Pattern, or a list of
those. Patterns may also be None which results in an empty list (you
might do this if waiting for an EOF or TIMEOUT condition without
expecting any pattern).

This is used by expect() when calling expect_list(). Thus expect() is
nothing more than:

cpl = self.compile_pattern_list(pl)
return self.expect_list(cpl, timeout)

If you are using expect() within a loop it may be more
efficient to compile the patterns first and then call expect_list().
This avoid calls in a loop to compile_pattern_list():

cpl = self.compile_pattern_list(my_pattern)
while some_condition:
 ...
 i = self.expect_list(cpl, timeout)
 ...

	
send(s)

	Sends string s to the child process, returning the number of
bytes written. If a logfile is specified, a copy is written to that
log.

The default terminal input mode is canonical processing unless set
otherwise by the child process. This allows backspace and other line
processing to be performed prior to transmitting to the receiving
program. As this is buffered, there is a limited size of such buffer.

On Linux systems, this is 4096 (defined by N_TTY_BUF_SIZE). All
other systems honor the POSIX.1 definition PC_MAX_CANON – 1024
on OSX, 256 on OpenSolaris, and 1920 on FreeBSD.

This value may be discovered using fpathconf(3):

>>> from os import fpathconf
>>> print(fpathconf(0, 'PC_MAX_CANON'))
256

On such a system, only 256 bytes may be received per line. Any
subsequent bytes received will be discarded. BEL (

 fdpexpect - use pexpect with a file descriptor

fdpexpect - use pexpect with a file descriptor

This is like pexpect, but it will work with any file descriptor that you
pass it. You are responsible for opening and close the file descriptor.
This allows you to use Pexpect with sockets and named pipes (FIFOs).

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

fdspawn class

	
class pexpect.fdpexpect.fdspawn(fd, args=None, timeout=30, maxread=2000, searchwindowsize=None, logfile=None, encoding=None, codec_errors='strict', use_poll=False)

	Bases: pexpect.spawnbase.SpawnBase

This is like pexpect.spawn but allows you to supply your own open file
descriptor. For example, you could use it to read through a file looking
for patterns, or to control a modem or serial device.

	
__init__(fd, args=None, timeout=30, maxread=2000, searchwindowsize=None, logfile=None, encoding=None, codec_errors='strict', use_poll=False)

	This takes a file descriptor (an int) or an object that support the
fileno() method (returning an int). All Python file-like objects
support fileno().

	
isalive()

	This checks if the file descriptor is still valid. If os.fstat() [https://docs.python.org/3/library/os.html#os.fstat]
does not raise an exception then we assume it is alive.

	
close()

	Close the file descriptor.

Calling this method a second time does nothing, but if the file
descriptor was closed elsewhere, OSError [https://docs.python.org/3/library/exceptions.html#OSError] will be raised.

	
expect()

	
expect_exact()

	
expect_list()

	As pexpect.spawn.

 popen_spawn - use pexpect with a piped subprocess

popen_spawn - use pexpect with a piped subprocess

Provides an interface like pexpect.spawn interface using subprocess.Popen

PopenSpawn class

	
class pexpect.popen_spawn.PopenSpawn(cmd, timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, encoding=None, codec_errors='strict', preexec_fn=None)

	
	
__init__(cmd, timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, encoding=None, codec_errors='strict', preexec_fn=None)

	Initialize self. See help(type(self)) for accurate signature.

	
send(s)

	Send data to the subprocess’ stdin.

Returns the number of bytes written.

	
sendline(s='')

	Wraps send(), sending string s to child process, with os.linesep
automatically appended. Returns number of bytes written.

	
write(s)

	This is similar to send() except that there is no return value.

	
writelines(sequence)

	This calls write() for each element in the sequence.

The sequence can be any iterable object producing strings, typically a
list of strings. This does not add line separators. There is no return
value.

	
kill(sig)

	Sends a Unix signal to the subprocess.

Use constants from the signal [https://docs.python.org/3/library/signal.html#module-signal] module to specify which signal.

	
sendeof()

	Closes the stdin pipe from the writing end.

	
wait()

	Wait for the subprocess to finish.

Returns the exit code.

	
expect()

	
expect_exact()

	
expect_list()

	As pexpect.spawn.

 replwrap - Control read-eval-print-loops

replwrap - Control read-eval-print-loops

Generic wrapper for read-eval-print-loops, a.k.a. interactive shells

New in version 3.3.

	
class pexpect.replwrap.REPLWrapper(cmd_or_spawn, orig_prompt, prompt_change, new_prompt='[PEXPECT_PROMPT>', continuation_prompt='[PEXPECT_PROMPT+', extra_init_cmd=None)

	Wrapper for a REPL.

	Parameters

	
	cmd_or_spawn – This can either be an instance of pexpect.spawn
in which a REPL has already been started, or a str command to start a new
REPL process.

	orig_prompt (str [https://docs.python.org/3/library/stdtypes.html#str]) – The prompt to expect at first.

	prompt_change (str [https://docs.python.org/3/library/stdtypes.html#str]) – A command to change the prompt to something more
unique. If this is None, the prompt will not be changed. This will
be formatted with the new and continuation prompts as positional
parameters, so you can use {} style formatting to insert them into
the command.

	new_prompt (str [https://docs.python.org/3/library/stdtypes.html#str]) – The more unique prompt to expect after the change.

	extra_init_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – Commands to do extra initialisation, such as
disabling pagers.

	
run_command(command, timeout=-1, async_=False)

	Send a command to the REPL, wait for and return output.

	Parameters

	
	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to send. Trailing newlines are not needed.
This should be a complete block of input that will trigger execution;
if a continuation prompt is found after sending input, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
will be raised.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – How long to wait for the next prompt. -1 means the
default from the pexpect.spawn object (default 30 seconds).
None means to wait indefinitely.

	async (bool [https://docs.python.org/3/library/functions.html#bool]) – On Python 3.4, or Python 3.3 with asyncio
installed, passing async_=True will make this return an
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] Future, which you can yield from to get the same
result that this method would normally give directly.

	
pexpect.replwrap.PEXPECT_PROMPT

	A string that can be used as a prompt, and is unlikely to be found in output.

Using the objects above, it is easy to wrap a REPL. For instance, to use a
Python shell:

py = REPLWrapper("python", ">>> ", "import sys; sys.ps1={!r}; sys.ps2={!r}")
py.run_command("4+7")

Convenience functions are provided for Python and bash shells:

	
pexpect.replwrap.python(command='python')

	Start a Python shell and return a REPLWrapper object.

	
pexpect.replwrap.bash(command='bash')

	Start a bash shell and return a REPLWrapper object.

 pxssh - control an SSH session

pxssh - control an SSH session

Note

pxssh is a screen-scraping wrapper around the SSH command on your system.
In many cases, you should consider using
Paramiko [https://github.com/paramiko/paramiko] or
RedExpect [https://github.com/Red-M/RedExpect] instead.
Paramiko is a Python module which speaks the SSH protocol directly, so it
doesn’t have the extra complexity of running a local subprocess.
RedExpect is very similar to pxssh except that it reads and writes directly
into an SSH session all done via Python with all the SSH protocol in C,
additionally it is written for communicating to SSH servers that are not just
Linux machines. Meaning that it is extremely fast in comparison to Paramiko
and already has the familiar expect API. In most cases RedExpect and pxssh
code should be fairly interchangeable.

This class extends pexpect.spawn to specialize setting up SSH connections.
This adds methods for login, logout, and expecting the shell prompt.

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

	
class pexpect.pxssh.ExceptionPxssh(value)

	Raised for pxssh exceptions.

pxssh class

	
class pexpect.pxssh.pxssh(timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, ignore_sighup=True, echo=True, options={}, encoding=None, codec_errors='strict', debug_command_string=False, use_poll=False)

	This class extends pexpect.spawn to specialize setting up SSH
connections. This adds methods for login, logout, and expecting the shell
prompt. It does various tricky things to handle many situations in the SSH
login process. For example, if the session is your first login, then pxssh
automatically accepts the remote certificate; or if you have public key
authentication setup then pxssh won’t wait for the password prompt.

pxssh uses the shell prompt to synchronize output from the remote host. In
order to make this more robust it sets the shell prompt to something more
unique than just $ or #. This should work on most Borne/Bash or Csh style
shells.

Example that runs a few commands on a remote server and prints the result:

from pexpect import pxssh
import getpass
try:
 s = pxssh.pxssh()
 hostname = raw_input('hostname: ')
 username = raw_input('username: ')
 password = getpass.getpass('password: ')
 s.login(hostname, username, password)
 s.sendline('uptime') # run a command
 s.prompt() # match the prompt
 print(s.before) # print everything before the prompt.
 s.sendline('ls -l')
 s.prompt()
 print(s.before)
 s.sendline('df')
 s.prompt()
 print(s.before)
 s.logout()
except pxssh.ExceptionPxssh as e:
 print("pxssh failed on login.")
 print(e)

Example showing how to specify SSH options:

from pexpect import pxssh
s = pxssh.pxssh(options={
 "StrictHostKeyChecking": "no",
 "UserKnownHostsFile": "/dev/null"})
...

Note that if you have ssh-agent running while doing development with pxssh
then this can lead to a lot of confusion. Many X display managers (xdm,
gdm, kdm, etc.) will automatically start a GUI agent. You may see a GUI
dialog box popup asking for a password during development. You should turn
off any key agents during testing. The ‘force_password’ attribute will turn
off public key authentication. This will only work if the remote SSH server
is configured to allow password logins. Example of using ‘force_password’
attribute:

s = pxssh.pxssh()
s.force_password = True
hostname = raw_input('hostname: ')
username = raw_input('username: ')
password = getpass.getpass('password: ')
s.login (hostname, username, password)

debug_command_string is only for the test suite to confirm that the string
generated for SSH is correct, using this will not allow you to do
anything other than get a string back from pxssh.pxssh.login().

	
__init__(timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, ignore_sighup=True, echo=True, options={}, encoding=None, codec_errors='strict', debug_command_string=False, use_poll=False)

	This is the constructor. The command parameter may be a string that
includes a command and any arguments to the command. For example:

child = pexpect.spawn('/usr/bin/ftp')
child = pexpect.spawn('/usr/bin/ssh user@example.com')
child = pexpect.spawn('ls -latr /tmp')

You may also construct it with a list of arguments like so:

child = pexpect.spawn('/usr/bin/ftp', [])
child = pexpect.spawn('/usr/bin/ssh', ['user@example.com'])
child = pexpect.spawn('ls', ['-latr', '/tmp'])

After this the child application will be created and will be ready to
talk to. For normal use, see expect() and send() and sendline().

Remember that Pexpect does NOT interpret shell meta characters such as
redirect, pipe, or wild cards (>, |, or *). This is a
common mistake. If you want to run a command and pipe it through
another command then you must also start a shell. For example:

child = pexpect.spawn('/bin/bash -c "ls -l | grep LOG > logs.txt"')
child.expect(pexpect.EOF)

The second form of spawn (where you pass a list of arguments) is useful
in situations where you wish to spawn a command and pass it its own
argument list. This can make syntax more clear. For example, the
following is equivalent to the previous example:

shell_cmd = 'ls -l | grep LOG > logs.txt'
child = pexpect.spawn('/bin/bash', ['-c', shell_cmd])
child.expect(pexpect.EOF)

The maxread attribute sets the read buffer size. This is maximum number
of bytes that Pexpect will try to read from a TTY at one time. Setting
the maxread size to 1 will turn off buffering. Setting the maxread
value higher may help performance in cases where large amounts of
output are read back from the child. This feature is useful in
conjunction with searchwindowsize.

When the keyword argument searchwindowsize is None (default), the
full buffer is searched at each iteration of receiving incoming data.
The default number of bytes scanned at each iteration is very large
and may be reduced to collaterally reduce search cost. After
expect() returns, the full buffer attribute remains up to
size maxread irrespective of searchwindowsize value.

When the keyword argument timeout is specified as a number,
(default: 30), then TIMEOUT will be raised after the value
specified has elapsed, in seconds, for any of the expect()
family of method calls. When None, TIMEOUT will not be raised, and
expect() may block indefinitely until match.

The logfile member turns on or off logging. All input and output will
be copied to the given file object. Set logfile to None to stop
logging. This is the default. Set logfile to sys.stdout to echo
everything to standard output. The logfile is flushed after each write.

Example log input and output to a file:

child = pexpect.spawn('some_command')
fout = open('mylog.txt','wb')
child.logfile = fout

Example log to stdout:

In Python 2:
child = pexpect.spawn('some_command')
child.logfile = sys.stdout

In Python 3, we'll use the ``encoding`` argument to decode data
from the subprocess and handle it as unicode:
child = pexpect.spawn('some_command', encoding='utf-8')
child.logfile = sys.stdout

The logfile_read and logfile_send members can be used to separately log
the input from the child and output sent to the child. Sometimes you
don’t want to see everything you write to the child. You only want to
log what the child sends back. For example:

child = pexpect.spawn('some_command')
child.logfile_read = sys.stdout

You will need to pass an encoding to spawn in the above code if you are
using Python 3.

To separately log output sent to the child use logfile_send:

child.logfile_send = fout

If ignore_sighup is True, the child process will ignore SIGHUP
signals. The default is False from Pexpect 4.0, meaning that SIGHUP
will be handled normally by the child.

The delaybeforesend helps overcome a weird behavior that many users
were experiencing. The typical problem was that a user would expect() a
“Password:” prompt and then immediately call sendline() to send the
password. The user would then see that their password was echoed back
to them. Passwords don’t normally echo. The problem is caused by the
fact that most applications print out the “Password” prompt and then
turn off stdin echo, but if you send your password before the
application turned off echo, then you get your password echoed.
Normally this wouldn’t be a problem when interacting with a human at a
real keyboard. If you introduce a slight delay just before writing then
this seems to clear up the problem. This was such a common problem for
many users that I decided that the default pexpect behavior should be
to sleep just before writing to the child application. 1/20th of a
second (50 ms) seems to be enough to clear up the problem. You can set
delaybeforesend to None to return to the old behavior.

Note that spawn is clever about finding commands on your path.
It uses the same logic that “which” uses to find executables.

If you wish to get the exit status of the child you must call the
close() method. The exit or signal status of the child will be stored
in self.exitstatus or self.signalstatus. If the child exited normally
then exitstatus will store the exit return code and signalstatus will
be None. If the child was terminated abnormally with a signal then
signalstatus will store the signal value and exitstatus will be None:

child = pexpect.spawn('some_command')
child.close()
print(child.exitstatus, child.signalstatus)

If you need more detail you can also read the self.status member which
stores the status returned by os.waitpid. You can interpret this using
os.WIFEXITED/os.WEXITSTATUS or os.WIFSIGNALED/os.TERMSIG.

The echo attribute may be set to False to disable echoing of input.
As a pseudo-terminal, all input echoed by the “keyboard” (send()
or sendline()) will be repeated to output. For many cases, it is
not desirable to have echo enabled, and it may be later disabled
using setecho(False) followed by waitnoecho(). However, for some
platforms such as Solaris, this is not possible, and should be
disabled immediately on spawn.

If preexec_fn is given, it will be called in the child process before
launching the given command. This is useful to e.g. reset inherited
signal handlers.

The dimensions attribute specifies the size of the pseudo-terminal as
seen by the subprocess, and is specified as a two-entry tuple (rows,
columns). If this is unspecified, the defaults in ptyprocess will apply.

The use_poll attribute enables using select.poll() over select.select()
for socket handling. This is handy if your system could have > 1024 fds

	
PROMPT

	The regex pattern to search for to find the prompt. If you call login()
with auto_prompt_reset=False, you must set this attribute manually.

	
force_password

	If this is set to True, public key authentication is disabled, forcing the
server to ask for a password. Note that the sysadmin can disable password
logins, in which case this won’t work.

	
options

	The dictionary of user specified SSH options, eg, options = dict(StrictHostKeyChecking="no", UserKnownHostsFile="/dev/null")

	
login(server, username=None, password='', terminal_type='ansi', original_prompt='[#$]', login_timeout=10, port=None, auto_prompt_reset=True, ssh_key=None, quiet=True, sync_multiplier=1, check_local_ip=True, password_regex='(?i)(?:password:)|(?:passphrase for key)', ssh_tunnels={}, spawn_local_ssh=True, sync_original_prompt=True, ssh_config=None, cmd='ssh')

	This logs the user into the given server.

It uses ‘original_prompt’ to try to find the prompt right after login.
When it finds the prompt it immediately tries to reset the prompt to
something more easily matched. The default ‘original_prompt’ is very
optimistic and is easily fooled. It’s more reliable to try to match the original
prompt as exactly as possible to prevent false matches by server
strings such as the “Message Of The Day”. On many systems you can
disable the MOTD on the remote server by creating a zero-length file
called ~/.hushlogin on the remote server. If a prompt cannot be found
then this will not necessarily cause the login to fail. In the case of
a timeout when looking for the prompt we assume that the original
prompt was so weird that we could not match it, so we use a few tricks
to guess when we have reached the prompt. Then we hope for the best and
blindly try to reset the prompt to something more unique. If that fails
then login() raises an ExceptionPxssh exception.

In some situations it is not possible or desirable to reset the
original prompt. In this case, pass auto_prompt_reset=False to
inhibit setting the prompt to the UNIQUE_PROMPT. Remember that pxssh
uses a unique prompt in the prompt() method. If the original prompt is
not reset then this will disable the prompt() method unless you
manually set the PROMPT attribute.

Set password_regex if there is a MOTD message with password in it.
Changing this is like playing in traffic, don’t (p)expect it to match straight
away.

If you require to connect to another SSH server from the your original SSH
connection set spawn_local_ssh to False and this will use your current
session to do so. Setting this option to False and not having an active session
will trigger an error.

Set ssh_key to a file path to an SSH private key to use that SSH key
for the session authentication.
Set ssh_key to True to force passing the current SSH authentication socket
to the desired hostname.

Set ssh_config to a file path string of an SSH client config file to pass that
file to the client to handle itself. You may set any options you wish in here, however
doing so will require you to post extra information that you may not want to if you
run into issues.

Alter the cmd to change the ssh client used, or to prepend it with network
namespaces. For example `cmd="ip netns exec vlan2 ssh"` to execute the ssh in
network namespace named `vlan`.

	
logout()

	Sends exit to the remote shell.

If there are stopped jobs then this automatically sends exit twice.

	
prompt(timeout=-1)

	Match the next shell prompt.

This is little more than a short-cut to the expect()
method. Note that if you called login() with
auto_prompt_reset=False, then before calling prompt() you must
set the PROMPT attribute to a regex that it will use for
matching the prompt.

Calling prompt() will erase the contents of the before
attribute even if no prompt is ever matched. If timeout is not given or
it is set to -1 then self.timeout is used.

	Returns

	True if the shell prompt was matched, False if the timeout was
reached.

	
sync_original_prompt(sync_multiplier=1.0)

	This attempts to find the prompt. Basically, press enter and record
the response; press enter again and record the response; if the two
responses are similar then assume we are at the original prompt.
This can be a slow function. Worst case with the default sync_multiplier
can take 12 seconds. Low latency connections are more likely to fail
with a low sync_multiplier. Best case sync time gets worse with a
high sync multiplier (500 ms with default).

	
set_unique_prompt()

	This sets the remote prompt to something more unique than # or $.
This makes it easier for the prompt() method to match the shell prompt
unambiguously. This method is called automatically by the login()
method, but you may want to call it manually if you somehow reset the
shell prompt. For example, if you ‘su’ to a different user then you
will need to manually reset the prompt. This sends shell commands to
the remote host to set the prompt, so this assumes the remote host is
ready to receive commands.

Alternatively, you may use your own prompt pattern. In this case you
should call login() with auto_prompt_reset=False; then set the
PROMPT attribute to a regular expression. After that, the
prompt() method will try to match your prompt pattern.

 Examples

Examples

Under the distribution tarball directory you should find an “examples” directory.
This is the best way to learn to use Pexpect. See the descriptions of Pexpect
Examples.

	topip.py [https://github.com/pexpect/pexpect/blob/master/examples/topip.py]

	This runs netstat on a local or remote server. It calculates some simple
statistical information on the number of external inet connections. This can
be used to detect if one IP address is taking up an excessive number of
connections. It can also send an email alert if a given IP address exceeds a
threshold between runs of the script. This script can be used as a drop-in
Munin plugin or it can be used stand-alone from cron. I used this on a busy
web server that would sometimes get hit with denial of service attacks. This
made it easy to see if a script was opening many multiple connections. A
typical browser would open fewer than 10 connections at once. A script might
open over 100 simultaneous connections.

	hive.py [https://github.com/pexpect/pexpect/blob/master/examples/hive.py]

	This script creates SSH connections to a list of hosts that you provide.
Then you are given a command line prompt. Each shell command that you
enter is sent to all the hosts. The response from each host is collected
and printed. For example, you could connect to a dozen different
machines and reboot them all at once.

	script.py [https://github.com/pexpect/pexpect/blob/master/examples/script.py]

	This implements a command similar to the classic BSD “script” command.
This will start a subshell and log all input and output to a file.
This demonstrates the interact() method of Pexpect.

	ftp.py [https://github.com/pexpect/pexpect/blob/master/examples/ftp.py]

	This demonstrates an FTP “bookmark”. This connects to an ftp site;
does a few ftp tasks; and then gives the user interactive control over
the session. In this case the “bookmark” is to a directory on the
OpenBSD ftp server. It puts you in the i386 packages directory. You
can easily modify this for other sites. This demonstrates the
interact() method of Pexpect.

	monitor.py [https://github.com/pexpect/pexpect/blob/master/examples/monitor.py]

	This runs a sequence of commands on a remote host using SSH. It runs a
simple system checks such as uptime and free to monitor the state of
the remote host.

	passmass.py [https://github.com/pexpect/pexpect/blob/master/examples/passmass.py]

	This will login to each given server and change the password of the
given user. This demonstrates scripting logins and passwords.

	python.py [https://github.com/pexpect/pexpect/blob/master/examples/python.py]

	This starts the python interpreter and prints the greeting message
backwards. It then gives the user interactive control of Python. It’s
pretty useless!

	ssh_tunnel.py [https://github.com/pexpect/pexpect/blob/master/examples/ssh_tunnel.py]

	This starts an SSH tunnel to a remote machine. It monitors the
connection and restarts the tunnel if it goes down.

	uptime.py [https://github.com/pexpect/pexpect/blob/master/examples/uptime.py]

	This will run the uptime command and parse the output into variables.
This demonstrates using a single regular expression to match the
output of a command and capturing different variable in match groups.
The grouping regular expression handles a wide variety of different
uptime formats.

 FAQ

FAQ

Q: Where can I get help with pexpect? Is there a mailing list?

A: You can use the pexpect tag on Stackoverflow [http://stackoverflow.com/questions/tagged/pexpect]
to ask questions specifically related to Pexpect. For more general Python
support, there’s the python-list [https://mail.python.org/mailman/listinfo/python-list] mailing list, and the #python [https://www.python.org/community/irc/]
IRC channel. Please refrain from using github for general
python or systems scripting support.

Q: Why don’t shell pipe and redirect (| and >) work when I spawn a command?

A: Remember that Pexpect does NOT interpret shell meta characters such as
redirect, pipe, or wild cards (>, |, or *). That’s done by a shell not
the command you are spawning. This is a common mistake. If you want to run a
command and pipe it through another command then you must also start a shell.
For example:

child = pexpect.spawn('/bin/bash -c "ls -l | grep LOG > log_list.txt"')
child.expect(pexpect.EOF)

The second form of spawn (where you pass a list of arguments) is useful in
situations where you wish to spawn a command and pass it its own argument list.
This can make syntax more clear. For example, the following is equivalent to the
previous example:

shell_cmd = 'ls -l | grep LOG > log_list.txt'
child = pexpect.spawn('/bin/bash', ['-c', shell_cmd])
child.expect(pexpect.EOF)

Q: The `before` and `after` properties sound weird.

A: This is how the -B and -A options in grep works, so that made it
easier for me to remember. Whatever makes my life easier is what’s best.
Originally I was going to model Pexpect after Expect, but then I found
that I didn’t actually like the way Expect did some things. It was more
confusing. The after property can be a little confusing at first,
because it will actually include the matched string. The after means
after the point of match, not after the matched string.

Q: Why not just use Expect?

A: I love it. It’s great. I has bailed me out of some real jams, but I
wanted something that would do 90% of what I need from Expect; be 10% of
the size; and allow me to write my code in Python instead of TCL.
Pexpect is not nearly as big as Expect, but Pexpect does everything I
have ever used Expect for.

Q: Why not just use a pipe (popen())?

A: A pipe works fine for getting the output to non-interactive programs.
If you just want to get the output from ls, uname, or ping then this
works. Pipes do not work very well for interactive programs and pipes
will almost certainly fail for most applications that ask for passwords
such as telnet, ftp, or ssh.

There are two reasons for this.

	First an application may bypass stdout and print directly to its
controlling TTY. Something like SSH will do this when it asks you for
a password. This is why you cannot redirect the password prompt because
it does not go through stdout or stderr.

	The second reason is because most applications are built using the C
Standard IO Library (anything that uses #include <stdio.h>). One
of the features of the stdio library is that it buffers all input and
output. Normally output is line buffered when a program is printing to
a TTY (your terminal screen). Everytime the program prints a line-feed
the currently buffered data will get printed to your screen. The
problem comes when you connect a pipe. The stdio library is smart and
can tell that it is printing to a pipe instead of a TTY. In that case
it switches from line buffer mode to block buffered. In this mode the
currently buffered data is flushed when the buffer is full. This
causes most interactive programs to deadlock. Block buffering is more
efficient when writing to disks and pipes. Take the situation where a
program prints a message "Enter your user name:\n" and then waits
for you type type something. In block buffered mode, the stdio library
will not put the message into the pipe even though a linefeed is
printed. The result is that you never receive the message, yet the
child application will sit and wait for you to type a response. Don’t
confuse the stdio lib’s buffer with the pipe’s buffer. The pipe buffer
is another area that can cause problems. You could flush the input
side of a pipe, whereas you have no control over the stdio library buffer.

More information: the Standard IO library has three states for a
FILE *. These are: _IOFBF for block buffered; _IOLBF for line buffered;
and _IONBF for unbuffered. The STDIO lib will use block buffering when
talking to a block file descriptor such as a pipe. This is usually not
helpful for interactive programs. Short of recompiling your program to
include fflush() everywhere or recompiling a custom stdio library there
is not much a controlling application can do about this if talking over
a pipe.

The program may have put data in its output that remains unflushed
because the output buffer is not full; then the program will go and
deadlock while waiting for input – because you never send it any
because you are still waiting for its output (still stuck in the STDIO’s
output buffer).

The answer is to use a pseudo-tty. A TTY device will force line
buffering (as opposed to block buffering). Line buffering means that you
will get each line when the child program sends a line feed. This
corresponds to the way most interactive programs operate – send a line
of output then wait for a line of input.

I put “answer” in quotes because it’s ugly solution and because there is
no POSIX standard for pseudo-TTY devices (even though they have a TTY
standard…). What would make more sense to me would be to have some way
to set a mode on a file descriptor so that it will tell the STDIO to be
line-buffered. I have investigated, and I don’t think there is a way to
set the buffered state of a child process. The STDIO Library does not
maintain any external state in the kernel or whatnot, so I don’t think
there is any way for you to alter it. I’m not quite sure how this
line-buffered/block-buffered state change happens internally in the
STDIO library. I think the STDIO lib looks at the file descriptor and
decides to change behavior based on whether it’s a TTY or a block file
(see isatty()).

I hope that this qualifies as helpful. Don’t use a pipe to control
another application.

Q: Can I do screen scraping with this thing?

A: That depends. If your application just does line-oriented output then
this is easy. If a program emits many terminal sequences, from video
attributes to screen addressing, such as programs using curses, then
it may become very difficult to ascertain what text is displayed on a screen.

We suggest using the pyte [https://github.com/selectel/pyte] library to
screen-scrape. The module pexpect.ANSI released with previous versions
of pexpect is now marked deprecated and may be removed in the future.

Q: I get strange behavior with pexect and gevent

A: Pexpect uses fork(2), exec(2), select(2), waitpid(2), and implements its
own selector in expect family of calls. pexpect has been known to misbehave
when paired with gevent. A solution might be to isolate your pexpect
dependent code from any frameworks that manipulate event selection behavior
by running it in an another process entirely.

 Common problems

Common problems

Threads

On Linux (RH 8) you cannot spawn a child from a different thread and pass the
handle back to a worker thread. The child is successfully spawned but you can’t
interact with it. The only way to make it work is to spawn and interact with the
child all in the same thread. [Adam Kerrison]

Timing issue with send() and sendline()

This problem has been addressed and should not affect most users.

It is sometimes possible to read an echo of the string sent with
send() and sendline(). If you call
send() and then immediately call readline(),
you may get part of your output echoed back. You may read back what you just
wrote even if the child application does not explicitly echo it. Timing is
critical. This could be a security issue when talking to an application that
asks for a password; otherwise, this does not seem like a big deal. But why do
TTYs do this?

People usually report this when they are trying to control SSH or some other
login. For example, if your code looks something like this:

child.expect ('[pP]assword:')
child.sendline (my_password)

	SSH prints “password:” prompt to the user.

	SSH turns off echo on the TTY device.

	SSH waits for user to enter a password.

When scripting with Pexpect what can happen is that Pexpect will respond to the
“password:” prompt before SSH has had time to turn off TTY echo. In other words,
Pexpect sends the password between steps 1. and 2., so the password gets echoed
back to the TTY. I would call this an SSH bug.

Pexpect now automatically adds a short delay before sending data to a child
process. This more closely mimics what happens in the usual human-to-app
interaction. The delay can be tuned with the delaybeforesend attribute of
objects of the spawn class. In general, this fixes the problem for everyone and so
this should not be an issue for most users. For some applications you might with
to turn it off:

child = pexpect.spawn ("ssh user@example.com")
child.delaybeforesend = None

Truncated output just before child exits

So far I have seen this only on older versions of Apple’s MacOS X. If the child
application quits it may not flush its output buffer. This means that your
Pexpect application will receive an EOF even though it should have received a
little more data before the child died. This is not generally a problem when
talking to interactive child applications. One example where it is a problem is
when trying to read output from a program like ls. You may receive most of the
directory listing, but the last few lines will get lost before you receive an EOF.
The reason for this is that ls runs; completes its task; and then exits. The
buffer is not flushed before exit so the last few lines are lost. The following
example demonstrates the problem:

child = pexpect.spawn('ls -l')
child.expect(pexpect.EOF)
print child.before

Controlling SSH on Solaris

Pexpect does not yet work perfectly on Solaris. One common problem is that SSH
sometimes will not allow TTY password authentication. For example, you may
expect SSH to ask you for a password using code like this:

child = pexpect.spawn('ssh user@example.com')
child.expect('password')
child.sendline('mypassword')

You may see the following error come back from a spawned child SSH:

Permission denied (publickey,keyboard-interactive).

This means that SSH thinks it can’t access the TTY to ask you for your password.
The only solution I have found is to use public key authentication with SSH.
This bypasses the need for a password. I’m not happy with this solution. The
problem is due to poor support for Solaris Pseudo TTYs in the Python Standard
Library.

child does not receive full input, emits BEL

You may notice when running for example cat(1) or base64(1), when sending a
very long input line, that it is not fully received, and the BEL (‘a’) may
be found in output.

By default the child terminal matches the parent, which is often in “canonical
mode processing”. You may wish to disable this mode. The exact limit of a line
varies by operating system, and details of disabling canonical mode may be
found in the docstring of send().

 History

History

Releases

Version 4.8

	Returned behavior of searchwindowsize to that in 4.3 and earlier (searches
are only done within the search window) (PR #579 [https://github.com/pexpect/pexpect/pull/579/]).

	Fixed a bug truncating before attribute after a timeout (PR #579 [https://github.com/pexpect/pexpect/pull/579/]).

	Fixed a bug where a search could be less than searchwindowsize if it
was increased between calls (PR #579 [https://github.com/pexpect/pexpect/pull/579/]).

	Minor test cleanups to improve portability (PR #580 [https://github.com/pexpect/pexpect/pull/580/]) (PR #581 [https://github.com/pexpect/pexpect/pull/581/])
(PR #582 [https://github.com/pexpect/pexpect/pull/582/]) (PR #583 [https://github.com/pexpect/pexpect/pull/583/]) (PR #584 [https://github.com/pexpect/pexpect/pull/584/]) (PR #585 [https://github.com/pexpect/pexpect/pull/585/]).

	Disable chaining of timeout and EOF exceptions (:gphull:`606`).

	Allow traceback included snippet length to be configured via
str_last_chars rather than always 100 (PR #598 [https://github.com/pexpect/pexpect/pull/598/]).

	Python 3 warning added to interact.py (PR #537 [https://github.com/pexpect/pexpect/pull/537/]).

	Several doc updates.

Version 4.7

	The pxssh.login() method now no longer requires a username if an ssh
config is provided and will raise an error if neither are provided.
(PR #562 [https://github.com/pexpect/pexpect/pull/562/]).

	The pxssh.login() method now supports providing your own ssh
command via the cmd parameter.
(PR #528 [https://github.com/pexpect/pexpect/pull/528/]) (PR #563 [https://github.com/pexpect/pexpect/pull/563/]).

	pxssh now supports the use_poll parameter which is passed into pexpect.spawn()
(PR #542 [https://github.com/pexpect/pexpect/pull/542/]).

	Minor bug fix with ssh_config.
(PR #498 [https://github.com/pexpect/pexpect/pull/498/]).

	replwrap.run_command() now has async support via an async_ parameter.
(PR #501 [https://github.com/pexpect/pexpect/pull/501/]).

	pexpect.spawn() will now read additional bytes if able up to a buffer limit.
(PR #304 [https://github.com/pexpect/pexpect/pull/304/]).

Version 4.6

	The pxssh.login() method now supports an ssh_config parameter,
which can be used to specify a file path to an SSH config file
(PR #490 [https://github.com/pexpect/pexpect/pull/490/]).

	Improved compatability for the crlf parameter of PopenSpawn
(PR #493 [https://github.com/pexpect/pexpect/pull/493/])

	Fixed an issue in read timeout handling when using spawn and
fdspawn with the use_poll parameter (PR #492 [https://github.com/pexpect/pexpect/pull/492/]).

Version 4.5

	spawn and fdspawn now have a use_poll parameter.
If this is True, they will use select.poll() [https://docs.python.org/3/library/select.html#select.poll] instead of select.select() [https://docs.python.org/3/library/select.html#select.select].
poll() allows file descriptors above 1024, but it must be explicitly
enabled due to compatibility concerns (PR #474 [https://github.com/pexpect/pexpect/pull/474/]).

	The pxssh.login() method has several new and changed options:

	The option password_regex allows changing
the password prompt regex, for servers that include password: in a banner
before reaching a prompt (PR #468 [https://github.com/pexpect/pexpect/pull/468/]).

	login() now allows for setting up SSH tunnels to be requested once
logged in to the remote server. This option is ssh_tunnels (PR #473 [https://github.com/pexpect/pexpect/pull/473/]).
The structure should be like this:

{
 'local': ['2424:localhost:22'], # Local SSH tunnels
 'remote': ['2525:localhost:22'], # Remote SSH tunnels
 'dynamic': [8888], # Dynamic/SOCKS tunnels
}

	The option spawn_local_ssh=False allows subsequent logins from the
remote session and treats the session as if it was local (PR #472 [https://github.com/pexpect/pexpect/pull/472/]).

	Setting sync_original_prompt=False will prevent changing the prompt to
something unique, in case the remote server is sensitive to new lines at login
(PR #468 [https://github.com/pexpect/pexpect/pull/468/]).

	If ssh_key=True is passed, the SSH client forces forwarding the authentication
agent to the remote server instead of providing a key (PR #473 [https://github.com/pexpect/pexpect/pull/473/]).

Version 4.4

	PopenSpawn now has a preexec_fn parameter, like spawn
and subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen], for a function to be called in the child
process before executing the new command. Like in Popen, this works only
in POSIX, and can cause issues if your application also uses threads
(PR #460 [https://github.com/pexpect/pexpect/pull/460/]).

	Significant performance improvements when processing large amounts of data
(PR #464 [https://github.com/pexpect/pexpect/pull/464/]).

	Ensure that spawn.closed gets set by close(), and improve
an example for passing SIGWINCH through to a child process (PR #466 [https://github.com/pexpect/pexpect/pull/466/]).

Version 4.3.1

	When launching bash for pexpect.replwrap, load the system bashrc
from a couple of different common locations (PR #457 [https://github.com/pexpect/pexpect/pull/457/]), and then unset
the PROMPT_COMMAND environment variable, which can interfere with the
prompt we’re expecting (PR #459 [https://github.com/pexpect/pexpect/pull/459/]).

Version 4.3

	The async= parameter to integrate with asyncio has become async_=
(PR #431 [https://github.com/pexpect/pexpect/pull/431/]), as async is becoming a Python keyword from Python 3.6.
Pexpect will still recognise async as an alternative spelling.

	Similarly, the module pexpect.async became pexpect._async
(PR #450 [https://github.com/pexpect/pexpect/pull/450/]). This module is not part of the public API.

	Fix problems with asyncio objects closing file descriptors during garbage
collection (#347 [https://github.com/pexpect/pexpect/issues/347/], PR #376 [https://github.com/pexpect/pexpect/pull/376/]).

	Set the .pid attribute of a PopenSpawn object (PR #417 [https://github.com/pexpect/pexpect/pull/417/]).

	Fix passing Windows paths to PopenSpawn (PR #446 [https://github.com/pexpect/pexpect/pull/446/]).

	PopenSpawn on Windows can pass string commands through to Popen
without splitting them into a list (PR #447 [https://github.com/pexpect/pexpect/pull/447/]).

	Stop shlex trying to read from stdin when PopenSpawn is
passed cmd=None (#433 [https://github.com/pexpect/pexpect/issues/433/], PR #434 [https://github.com/pexpect/pexpect/pull/434/]).

	Ensure that an error closing a Pexpect spawn object raises a Pexpect error,
rather than a Ptyprocess error (#383 [https://github.com/pexpect/pexpect/issues/383/], PR #386 [https://github.com/pexpect/pexpect/pull/386/]).

	Cleaned up invalid backslash escape sequences in strings (PR #430 [https://github.com/pexpect/pexpect/pull/430/],
PR #445 [https://github.com/pexpect/pexpect/pull/445/]).

	The pattern for a password prompt in pexpect.pxssh changed from
password to password: (PR #452 [https://github.com/pexpect/pexpect/pull/452/]).

	Correct docstring for using unicode with spawn (PR #395 [https://github.com/pexpect/pexpect/pull/395/]).

	Various other improvements to documentation.

Version 4.2.1

	Fix to allow running env in replwrap-ed bash.

	Raise more informative exception from pxssh if it fails to connect.

	Change passmass example to not log passwords entered.

Version 4.2

	Change: When an env parameter is specified to the spawn or
run family of calls containing a value for PATH, its value is
used to discover the target executable from a relative path, rather than the
current process’s environment PATH. This mirrors the behavior of
subprocess.Popen() in the standard library (#348 [https://github.com/pexpect/pexpect/issues/348/]).

	Regression: Re-introduce capability for read_nonblocking() in class
fdspawn as previously supported in version 3.3 (#359 [https://github.com/pexpect/pexpect/issues/359/]).

Version 4.0

	Integration with asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]: passing async=True to expect(),
expect_exact() or expect_list() will make them return a
coroutine. You can get the result using yield from, or wrap it in an
asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task]. This allows the event loop to do other things while
waiting for output that matches a pattern.

	Experimental support for Windows (with some caveats)—see Pexpect on Windows.

	Enhancement: allow method as callbacks of argument events for
pexpect.run() (#176 [https://github.com/pexpect/pexpect/issues/176/]).

	It is now possible to call wait() multiple times, or after a process
is already determined to be terminated without raising an exception
(PR #211 [https://github.com/pexpect/pexpect/pull/211/]).

	New pexpect.spawn keyword argument, dimensions=(rows, columns)
allows setting terminal screen dimensions before launching a program
(#122 [https://github.com/pexpect/pexpect/issues/122/]).

	Fix regression that prevented executable, but unreadable files from
being found when not specified by absolute path – such as
/usr/bin/sudo (#104 [https://github.com/pexpect/pexpect/issues/104/]).

	Fixed regression when executing pexpect with some prior releases of
the multiprocessing module where stdin has been closed (#86 [https://github.com/pexpect/pexpect/issues/86/]).

Backwards incompatible changes

	Deprecated pexpect.screen and pexpect.ANSI. Please use other packages
such as pyte [https://pypi.python.org/pypi/pyte] to emulate a terminal.

	Removed the independent top-level modules (pxssh fdpexpect FSM screen ANSI)
which were installed alongside Pexpect. These were moved into the Pexpect
package in 3.0, but the old names were left as aliases.

	Child processes created by Pexpect no longer ignore SIGHUP by default: the
ignore_sighup parameter of pexpect.spawn defaults to False. To
get the old behaviour, pass ignore_sighup=True.

Version 3.3

	Added a mechanism to wrap REPLs, or shells, in an object which can conveniently
be used to send commands and wait for the output (pexpect.replwrap).

	Fixed issue where pexpect would attempt to execute a directory because
it has the ‘execute’ bit set (#37 [https://github.com/pexpect/pexpect/issues/37/]).

	Removed the pexpect.psh module. This was never documented, and we found
no evidence that people use it. The new pexpect.replwrap module
provides a more flexible alternative.

	Fixed TypeError: got <type 'str'> ('\r\n') as pattern in spawnu.readline()
method (#67 [https://github.com/pexpect/pexpect/issues/67/]).

	Fixed issue where EOF was not correctly detected in interact(), causing
a repeating loop of output on Linux, and blocking before EOF on BSD and
Solaris (#49 [https://github.com/pexpect/pexpect/issues/49/]).

	Several Solaris (SmartOS) bugfixes, preventing IOError [https://docs.python.org/3/library/exceptions.html#IOError] exceptions, especially
when used with cron(1) (#44 [https://github.com/pexpect/pexpect/issues/44/]).

	Added new keyword argument echo=True for spawn. On SVR4-like
systems, the method isatty() will always return False: the child pty
does not appear as a terminal. Therefore, setecho(), getwinsize(),
setwinsize(), and waitnoecho() are not supported on those platforms.

After this, we intend to start working on a bigger refactoring of the code, to
be released as Pexpect 4. There may be more bugfix 3.x releases, however.

Version 3.2

	Fix exception handling from select.select() [https://docs.python.org/3/library/select.html#select.select] on Python 2 (PR #38 [https://github.com/pexpect/pexpect/pull/38/]).
This was accidentally broken in the previous release when it was fixed for
Python 3.

	Removed a workaround for TIOCSWINSZ on very old systems, which was causing
issues on some BSD systems (PR #40 [https://github.com/pexpect/pexpect/pull/40/]).

	Fixed an issue with exception handling in pxssh (PR #43 [https://github.com/pexpect/pexpect/pull/43/])

The documentation for pxssh was improved.

Version 3.1

	Fix an issue that prevented importing pexpect on Python 3 when sys.stdout
was reassigned (#30 [https://github.com/pexpect/pexpect/issues/30/]).

	Improve prompt synchronisation in pxssh (PR #28 [https://github.com/pexpect/pexpect/pull/28/]).

	Fix pickling exception instances (PR #34 [https://github.com/pexpect/pexpect/pull/34/]).

	Fix handling exceptions from select.select() [https://docs.python.org/3/library/select.html#select.select] on Python 3 (PR #33 [https://github.com/pexpect/pexpect/pull/33/]).

The examples have also been cleaned up somewhat - this will continue in future
releases.

Version 3.0

The new major version number doesn’t indicate any deliberate API incompatibility.
We have endeavoured to avoid breaking existing APIs. However, pexpect is under
new maintenance after a long dormancy, so some caution is warranted.

	A new unicode API was introduced.

	Python 3 is now supported, using a single codebase.

	Pexpect now requires at least Python 2.6 or 3.2.

	The modules other than pexpect, such as pexpect.fdpexpect and
pexpect.pxssh, were moved into the pexpect package. For now, wrapper
modules are installed to the old locations for backwards compatibility (e.g.
import pxssh will still work), but these will be removed at some point in
the future.

	Ignoring SIGHUP is now optional - thanks to Kimmo Parviainen-Jalanko for
the patch.

We also now have docs on ReadTheDocs [https://pexpect.readthedocs.io/],
and continuous integration on Travis CI [https://travis-ci.org/pexpect/pexpect].

Version 2.4

	Fix a bug regarding making the pty the controlling terminal when the process
spawning it is not, actually, a terminal (such as from cron)

Version 2.3

	Fixed OSError exception when a pexpect object is cleaned up. Previously, you
might have seen this exception:

Exception exceptions.OSError: (10, 'No child processes')
in <bound method spawn.__del__ of <pexpect.spawn instance at 0xd248c>> ignored

You should not see that anymore. Thanks to Michael Surette.

	Added support for buffering reads. This greatly improves speed when trying to
match long output from a child process. When you create an instance of the spawn
object you can then set a buffer size. For now you MUST do the following to turn
on buffering – it may be on by default in future version:

child = pexpect.spawn ('my_command')
child.maxread=1000 # Sets buffer to 1000 characters.

	I made a subtle change to the way TIMEOUT and EOF exceptions behave.
Previously you could either expect these states in which case pexpect
will not raise an exception, or you could just let pexpect raise an
exception when these states were encountered. If you expected the
states then the before property was set to everything before the
state was encountered, but if you let pexpect raise the exception then
before was not set. Now, the before property will get set either
way you choose to handle these states.

	The spawn object now provides iterators for a file-like interface.
This makes Pexpect a more complete file-like object. You can now write
code like this:

child = pexpect.spawn ('ls -l')
for line in child:
 print line

	write and writelines() no longer return a value. Use send() if you need that
functionality. I did this to make the Spawn object more closely match a
file-like object.

	Added the attribute exitstatus. This will give the exit code returned
by the child process. This will be set to None while the child is still
alive. When isalive() returns 0 then exitstatus will be set.

	Made a few more tweaks to isalive() so that it will operate more
consistently on different platforms. Solaris is the most difficult to support.

	You can now put TIMEOUT in a list of expected patterns. This is just like
putting EOF in the pattern list. Expecting for a TIMEOUT may not be
used as often as EOF, but this makes Pexpect more consistent.

	Thanks to a suggestion and sample code from Chad J. Schroeder I added the ability
for Pexpect to operate on a file descriptor that is already open. This means that
Pexpect can be used to control streams such as those from serial port devices. Now,
you just pass the integer file descriptor as the “command” when constructing a
spawn open. For example on a Linux box with a modem on ttyS1:

fd = os.open("/dev/ttyS1", os.O_RDWR|os.O_NONBLOCK|os.O_NOCTTY)
m = pexpect.spawn(fd) # Note integer fd is used instead of usual string.
m.send("+++") # Escape sequence
m.send("ATZ0\r") # Reset modem to profile 0
rval = m.expect(["OK", "ERROR"])

	read() was renamed to read_nonblocking(). Added new read() method
that matches file-like object interface. In general, you should not notice
the difference except that read() no longer allows you to directly set the
timeout value. I hope this will not effect any existing code. Switching to
read_nonblocking() should fix existing code.

	Changed the name of set_echo() to setecho().

	Changed the name of send_eof() to sendeof().

	Modified kill() so that it checks to make sure the pid isalive().

	modified spawn() (really called from __spawn()) so that it does not
raise an exception if setwinsize() fails. Some platforms such as Cygwin
do not like setwinsize. This was a constant problem and since it is not a
critical feature I decided to just silence the error. Normally I don’t like
to do that, but in this case I’m making an exception.

	Added a method close() that does what you think. It closes the file
descriptor of the child application. It makes no attempt to actually kill the
child or wait for its status.

	Add variables __version__ and __revision__ (from cvs) to the pexpect
modules. This is mainly helpful to me so that I can make sure that I’m testing
with the right version instead of one already installed.

	log_open() and log_close(have been removed. Now use setlog().
The setlog() method takes a file object. This is far more flexible than
the previous log method. Each time data is written to the file object it will
be flushed. To turn logging off simply call setlog() with None.

	renamed the isAlive() method to isalive() to match the more typical
naming style in Python. Also the technique used to detect child process
status has been drastically modified. Previously I did some funky stuff
with signals which caused indigestion in other Python modules on some
platforms. It was a big headache. It still is, but I think it works
better now.

	attribute matched renamed to after

	new attribute match

	The expect_eof() method is gone. You can now simply use the
expect() method to look for EOF.

	Pexpect works on OS X, but the nature of the quirks cause many of the
tests to fail. See bugs. (Incomplete Child Output). The problem is more
than minor, but Pexpect is still more than useful for most tasks.

	Solaris: For some reason, the second time a pty file descriptor is created and
deleted it never gets returned for use. It does not effect the first time
or the third time or any time after that. It’s only the second time. This
is weird… This could be a file descriptor leak, or it could be some
peculiarity of how Solaris recycles them. I thought it was a UNIX requirement
for the OS to give you the lowest available filedescriptor number. In any case,
this should not be a problem unless you create hundreds of pexpect instances…
It may also be a pty module bug.

Moves and forks

	Pexpect development used to be hosted on Sourceforge.

	In 2011, Thomas Kluyver forked pexpect as ‘pexpect-u’, to support
Python 3. He later decided he had taken the wrong approach with this.

	In 2012, Noah Spurrier, the original author of Pexpect, moved the
project to Github, but was still too busy to develop it much.

	In 2013, Thomas Kluyver and Jeff Quast forked Pexpect again, intending
to call the new fork Pexpected. Noah Spurrier agreed to let them use
the name Pexpect, so Pexpect versions 3 and above are based on this
fork, which now lives here on Github [https://github.com/pexpect/pexpect].

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pexpect	

 	
 	
 pexpect.fdpexpect	

 	
 	
 pexpect.popen_spawn	

 	
 	
 pexpect.pxssh	

 	
 	
 pexpect.replwrap	

 Index

Index

 _
 | B
 | C
 | E
 | F
 | G
 | I
 | K
 | L
 | O
 | P
 | R
 | S
 | T
 | W

_

 	
 	__init__() (pexpect.fdpexpect.fdspawn method)

 	(pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.pxssh.pxssh method)

 	(pexpect.spawn method)

B

 	
 	bash() (in module pexpect.replwrap)

C

 	
 	child_fd (pexpect.spawn attribute)

 	close() (pexpect.fdpexpect.fdspawn method)

 	(pexpect.spawn method)

 	
 	compile_pattern_list() (pexpect.spawn method)

E

 	
 	EOF (class in pexpect)

 	eof() (pexpect.spawn method)

 	ExceptionPexpect (class in pexpect)

 	ExceptionPxssh (class in pexpect.pxssh)

 	expect() (pexpect.fdpexpect.fdspawn method)

 	(pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	
 	expect_exact() (pexpect.fdpexpect.fdspawn method)

 	(pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	expect_list() (pexpect.fdpexpect.fdspawn method)

 	(pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

F

 	
 	fdspawn (class in pexpect.fdpexpect)

 	
 	force_password (pexpect.pxssh.pxssh attribute)

G

 	
 	getecho() (pexpect.spawn method)

 	
 	getwinsize() (pexpect.spawn method)

I

 	
 	interact() (pexpect.spawn method)

 	
 	isalive() (pexpect.fdpexpect.fdspawn method)

 	(pexpect.spawn method)

K

 	
 	kill() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

L

 	
 	logfile (pexpect.spawn attribute)

 	logfile_read (pexpect.spawn attribute)

 	
 	logfile_send (pexpect.spawn attribute)

 	login() (pexpect.pxssh.pxssh method)

 	logout() (pexpect.pxssh.pxssh method)

O

 	
 	options (pexpect.pxssh.pxssh attribute)

P

 	
 	pexpect (module)

 	pexpect.fdpexpect (module)

 	pexpect.popen_spawn (module)

 	pexpect.pxssh (module)

 	pexpect.replwrap (module)

 	PEXPECT_PROMPT (in module pexpect.replwrap)

 	
 	pid (pexpect.spawn attribute)

 	PopenSpawn (class in pexpect.popen_spawn)

 	PROMPT (pexpect.pxssh.pxssh attribute)

 	prompt() (pexpect.pxssh.pxssh method)

 	pxssh (class in pexpect.pxssh)

 	python() (in module pexpect.replwrap)

R

 	
 	read() (pexpect.spawn method)

 	read_nonblocking() (pexpect.spawn method)

 	readline() (pexpect.spawn method)

 	
 	REPLWrapper (class in pexpect.replwrap)

 	run() (in module pexpect)

 	run_command() (pexpect.replwrap.REPLWrapper method)

S

 	
 	send() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	sendcontrol() (pexpect.spawn method)

 	sendeof() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	sendintr() (pexpect.spawn method)

 	sendline() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	
 	set_unique_prompt() (pexpect.pxssh.pxssh method)

 	setecho() (pexpect.spawn method)

 	setwinsize() (pexpect.spawn method)

 	spawn (class in pexpect), [1]

 	split_command_line() (in module pexpect)

 	sync_original_prompt() (pexpect.pxssh.pxssh method)

T

 	
 	terminate() (pexpect.spawn method)

 	
 	TIMEOUT (class in pexpect)

W

 	
 	wait() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	waitnoecho() (pexpect.spawn method)

 	which() (in module pexpect)

 	
 	write() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

 	writelines() (pexpect.popen_spawn.PopenSpawn method)

 	(pexpect.spawn method)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/pexpect.png
“build passing

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Pexpect version 4.8

 		
 Installation

 		
 Requirements

 		
 API Overview

 		
 Special EOF and TIMEOUT patterns

 		
 Find the end of line – CR/LF conventions

 		
 Beware of + and * at the end of patterns

 		
 Debugging

 		
 Exceptions

 		
 Pexpect on Windows

 		
 API documentation

 		
 Core pexpect components

 		
 spawn class

 		
 run function

 		
 Exceptions

 		
 Utility functions

 		
 fdpexpect - use pexpect with a file descriptor

 		
 fdspawn class

 		
 popen_spawn - use pexpect with a piped subprocess

 		
 PopenSpawn class

 		
 replwrap - Control read-eval-print-loops

 		
 pxssh - control an SSH session

 		
 pxssh class

 		
 Examples

 		
 FAQ

 		
 Common problems

 		
 Threads

 		
 Timing issue with send() and sendline()

 		
 Truncated output just before child exits

 		
 Controlling SSH on Solaris

 		
 child does not receive full input, emits BEL

 		
 History

 		
 Releases

 		
 Version 4.8

 		
 Version 4.7

 		
 Version 4.6

 		
 Version 4.5

 		
 Version 4.4

 		
 Version 4.3.1

 		
 Version 4.3

 		
 Version 4.2.1

 		
 Version 4.2

 		
 Version 4.0

 		
 Version 3.3

 		
 Version 3.2

 		
 Version 3.1

 		
 Version 3.0

 		
 Version 2.4

 		
 Version 2.3

 		
 Moves and forks

_static/up.png

_static/up-pressed.pn